箚 iŦ.

用 193 毫微米 ArF 准分子激光对 HgBr₂ 进行 单光子和双光子解离的研究

用 ArF 准分子激光器对 HgBr₂ 光解获得激光 输出首先由 E. J. Schimitschek 等人⁽¹⁾报道。他们 只用了较小的泵浦功率,在较低的溴化汞蒸气压下 工作,得到了 HgBr($B^2 \Sigma^+ \longrightarrow X^2 \Sigma^+$)的 502 毫微 米和 504 毫微米的激光跃迁。我们应用了不同的实 验条件,不仅观察到 HgBr₂ 的单光子解离,获得 HgBr($B^2 \Sigma^+ \longrightarrow X^2 \Sigma^+$)的 502 毫微米和 504 毫微 米绿色激光跃迁,而且,还第一次观察到 HgBr₂ 的 双光子解离,获得 Hg 原子 4047 埃和 4358 埃的超 辐射输出。

实验装置由准分子激光器、聚焦透镜、可以调节 温度的解离管、前后反射镜及光谱仪组成。所采用 的紫外光顶电离 ArF 准分子激光器是我们自己研 制的。最大输出脉冲能量大于 200 毫焦耳, 功率几 十兆瓦。我们设计的解离管结构考虑了防止窗口污 染和使用方便性,管子全部由 95* 玻璃制成,直径17 毫米,长 50 厘米。在管子两端离窗口约 60 毫米处 各加了一段水冷管,水冷管直径 25 毫米。缓冲气体 从管子两端充入。这样的管结构,在实验后没有观 察到窗口的明显污染。缓冲 气体 He 为 255 托, HgBr₂ 的蒸气压从1到 10 托可调。透镜焦距 55 厘 米。前镜是远紫外石英平板,中心镀 ¢4 毫米的对 502 毫微米全反膜。输出镜是对 502 毫微米透过 10% 的介质膜,曲率半径 3 米。这种实验对于光路 的精确调整是极为重要的。

当泵浦能量为十几毫焦耳时,得到了 502 毫微 米和 504 毫微米的激光输出。用 WPG-100 —米光

栅光谱仪拍摄了荧光谱和激光谱,示如图 1。从图 中可见,激光谱线分别位于 502 毫微米带和 504 毫 微米带。

当 HgBr₂的蒸气压达到一定数值且在合适的 泵浦功率下,我们观察到了强的 Hg 原子 4046.6 埃 和 4358.3 埃超辐射。其激光辐射谱照片示于图 2。

图 2 HgBr2 双光子解离获得的 Hg 原子超辐射

这二条激光谱线是由 HgBr₂ 的双光子解离产生的。 双光子解离的机理可能为:

 $HgBr_{2}+h\nu(193 毫微米) \longrightarrow HgBr(B^{2}\Sigma^{+})+Br$ (1) $HgBr(B^{2}\Sigma^{+})+h\nu(193 毫微 *) \longrightarrow Hg(7^{3}S_{1})$ +Br(2) 或 HgBr(B^{2}\Sigma^{+}) \longrightarrow HgBr(X^{2}\Sigma^{+})+h\nu(3)

 $HgBr(X^2\Sigma^+) + 2h\nu(193 毫微米) → Hg^* + Br$

(4)

 $\mathrm{Hg}^* \longrightarrow \mathrm{Hg}(7^3S_1) + h\nu \tag{5}$

或

$$HgBr_2 + 2h\nu(193 毫微米) \longrightarrow Hg^* + Br_2$$
 (6)

 $\operatorname{Hg}^* + M \longrightarrow \operatorname{Hg}(7^3S_1)$ (7)

$$\mathrm{Hg}^* \longrightarrow \mathrm{Hg}(7^3S_1) + h\nu \tag{8}$$

$$\operatorname{Hg}(7^{3}S_{1}) \longrightarrow \operatorname{Hg}\begin{pmatrix} 6^{3}P_{0} \\ 6^{3}P_{1} \end{pmatrix} + h\nu \begin{pmatrix} 4046, 6 \not \xi \\ 4358, 3 \not \xi \end{pmatrix}$$
(9)

由于我们可以同时观察到 HgBr 和 Hg 的 激光跃 迁,说明第三种机理是存在的。但是,当不出现 HgBr 激光时,也可以观察到 Hg 的跃迁。因此说明第一 种双光子解离过程也是存在的。在一般情况下,这 三种双光子解离的过程可能是并存的。

· 62 ·

我们观察了双光子解离的阈值特性。当 HgBr₂ 的加热温度在 150°C 以下时,没有观察到 Hg 的 4047 埃和 4358 埃的激射作用。但当超过此温度时, 且又在相应的泵浦功率下,才能观察到 Hg 的 4047 埃和 4358 埃超幅射。可见,这种双光子的解离过程 是存在阈值的。

作者感谢卢纯英师傅烧制了高质量的解离管。

参考文献

 E. J. Schimitschek et al.; Appl. Phys. Lett, 1977, 31, No.9, 608.

(中国科学院上海光机所 袁才来 上官诚 叶超 窦爱荣 1980年10月20日收稿)

激光裂解等离子计量分析术在油田勘探中的应用

由文献[1]、[2]中得知,可以从产物分布,特别 是乙炔相对丰度上判断岩样中有机物芳香化程度。 然而,岩样的芳香丰度又正是判断生油岩的重要地

编号	井深	分	·析	项	目		
	(米)	芳香函数	乙炔丰度	乙烯丰度	甲烷丰度		
×生 49-生-1	1373	0.21	0.490 ±0.032	0.372 ± 0.031	$\begin{array}{c} 0.136 \\ \pm 0.051 \end{array}$		
×生 49-生-4	1474~ 1475	0.21	$0.490 \\ \pm 0.051$	0.304 ±0.031	0.201 ± 0.062		
×生 49-生-5	1528~ 1529	0.16	$\substack{0.468\\\pm0.052}$	0.187 ± 0.027	0.355 ± 0.030		
×生 49-生-6	1610	0.23	$0.521 \\ \pm 0.052$	$0.162 \\ \pm 0.012$	0.317 ± 0.060		
×生 49-生-8	1707~ 1708	0.30	0.590 ± 0.022	0.219 ±0.016	$0.191 \\ \pm 0.061$		
×生 49-生-9	1753~ 1755	0.21	0.490 ± 0.011	0.258 ± 0.017	0.251 ± 0.041		
×生 49-生-11	1789	0.17	0.450 ±0.022	$0.321 \\ \pm 0.027$	0.229 ±0.007		
×生 49-生-13	1906	0.30	0.590 ±0.021	0.219 ± 0.016	$0.191 \\ \pm 0.061$		
×生 49-生-15	1920	0.33	0.629 ±0.082	0.213 ± 0.061	0.161 ± 0.025		
×生 49-生-16	1940	0.50	0.817 ± 0.062	$0.133 \\ \pm 0.031$	0.082 ± 0.033		
×生 49-生-17	1960	0.29	0.580 ± 0.061	0.108 ± 0.016	0.307 ± 0.061		

表 1 陕甘宁盆地X生-49 剖面 LPGC 分析数据

表2 塔里木盆地 LPGC 分析芳香丰度

异常数据

and an and the second se	PT-FL X / P-1-P-P-P-	They want the state of the	and the state of the second	
	芳香函数	乙炔丰度	乙烯丰度	甲烷丰度
塔生-1	0	0.152 ±0.075	0.788 ±0.076	0.060 ±0.001
塔生2	0.63	0.911 ± 0.01	0.024 ± 0.006	0.065 ± 0.005

球化学指标。我们应用红宝石激光裂解气相色谱法 (LPGC 方法),对石油部地质研究所所提供的全国 各大油田的岩样作分析。所得有关数据经石油部地 质所作对比分析后指出:"用 LPGC 法所测数据与 有机碳、有效碳存在线性关系。对陕甘宁油田剖面 所测数据反映了芳香丰度(熟化度)随埋藏深度变化 的趋势"(见表 1)。认为这是一种"有成效、有希望 的方法"。在这批测量数据中我们发现塔里木盆地 岩样有显著的芳香丰度异常(表 2),据此,可以认为 这里可能是一重要油区。总结前段工作,我们相信 激光裂解在岩样分析中的应用,是一个有意义的,有 待深入的课题。

参考文献

- [1] N. E. Vanderborgh, W. T. Ristau; Anal. Chem., 1973, 45, 1529.
- [2] 朱昌明等;"激光裂解气相色谱法对岩样内芳香烃丰度的研究",见本期 28 页。

(浙江化工学院激光化学科研组 范竞藩 朱昌明 1980年10月17日收稿)